Test Date ____ Hour__

ASTRONOMY#4 - NOTEBOOK The Moon, the Stars & the Galaxy

LEARNING TARGETS

- I can describe the similarities and differences between the Earth and the Moon.
- □ I can explain how craters are formed.
- □ I can describe the different Moon Phases and explain why we see them this way.
- □ I can explain eclipses and identify the difference between a lunar and solar eclipse.
- I can describe stars.

Name___

- □ I can compare stars using the HR diagram.
- □ I can explain why all stars except Polaris move across the night sky.
- **I** can explain why we can't see the shape of the Milky Way Galaxy from Earth.
- □ I can explain the difference between a planet, a solar system, a galaxy and the universe.

SCIENTIFIC Language

1. Crater - A large, bowl-shaped cavity on the surface of a planet or the moon, typically caused by the impact of a meteorite, asteroid or comet.

- 2. Waxing Moon A little bit more of the Moon is visible each night.
- 3. Crescent Moon A sliver of the Moon is visible, more than none, but less than half.
- 4. Gibbous Moon When more than half, but less than the full Moon is visible.
- 5. Waning Moon When less and less of the Moon is visible each night.

6. **Eclipse** – When our view of one object in the sky is blocked by either another object or the Earth's shadow.

7. **Stars** - A huge sphere of very hot, glowing gas producing its own light and heat energy by a process called nuclear fusion.

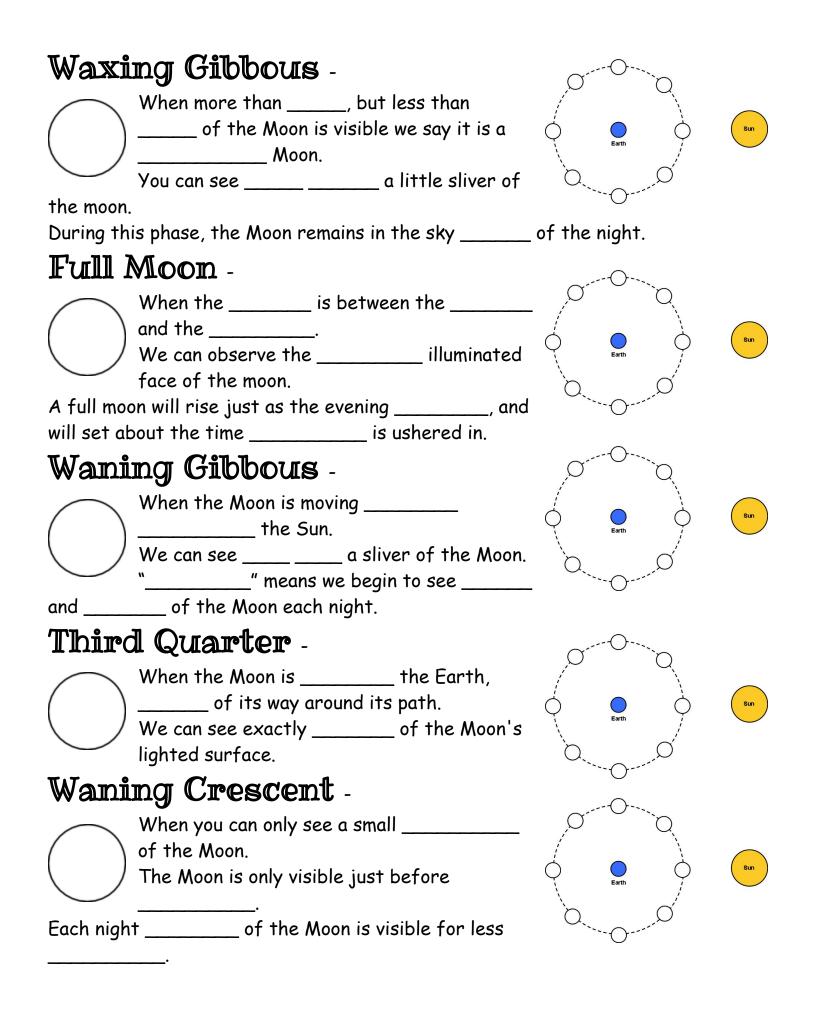
8. Polaris - The North Star which is perfectly aligned with the rotational North Pole.

9. HR Diagram - A scatter graph used to explain the brightness, temperature and classes of stars.

10. Galaxy - A large group of stars, dust, gas and dark matter held together by gravity.

11. Milky Way - The spiral galaxy that contains our solar system.

12. Universe - Everything that exists, including planets, stars, galaxies and all forms of matter and energy.

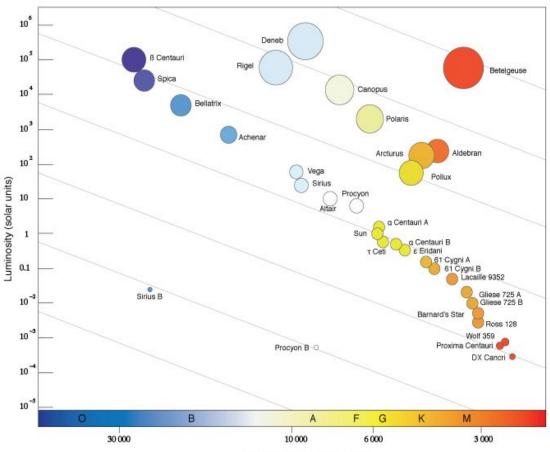

Our Moon

Moon Characteristics

The moon is our only natural ______. Ever since the moon formed, about ______ years ago, it has been inching away from our planet by about _____ centimeters per year. Like the Earth, the Moon _____, but much ______. The moon takes ______ to make one full rotation. So a 'lunar day' is almost an Earth _____ long! Just like the Earth orbits the Sun in a direction the moon also orbits around the Earth in a Moon direction. This orbit or revolution around the Earth Sun Earth takes the _____ amount of time as its _____, 27.3 days. Since the time it takes to make _____ rotation and _____ revolution are the same, something _____ happens. The _____ side of the Moon is always facing us. We never see the '_____' of the moon. Seeing that the Moon is ______ than Earth, it has less ______ than Earth. The Moon also has a much _____ magnetic field. This means it is not ______ from the solar winds like Earth is. Therefore, the moon has very little ______. Without an atmosphere incoming meteors don't , instead they hit the surface of the moon at covering it in craters. A _____ is large, bowl-shaped The Moon Crust cavity on the surface of a planet or 60-100 km thick No atmosphere Anorthosite rock covered with loose soil the moon, typically caused by the Impact impact of a _____, 00 craters **Rigid Lithospheric** Mantle · /0 0 1000 km thick or ____ 00(Drv. dustv. rocky surface Non-rigid Asthenospheric Mantle craters are some of the most Dark areas Semi-solid 0() (basaltic lava) features that can 00 $^{\circ}^{\circ}^{\circ}^{\circ}$ 0 0 be seen on the Moon. The Moon's Mountain Core ranges ō ° ° ° Possibly iron 4.5 billion year _____ has Maria (low, flat areas) been recorded in these craters. 1-3,476 km ©EnchantedLearning.com

Moon Phases

Watching the moon each night, you may notice that its appearance	
throughout the month. When you see the "", you are	e seeing the
light reflecting or the surface of the Mod	
Moon does give off its own light.	
Even though the Moon is always and the Sun's light is alw	•
off of it, we don't always see it as round. As the mod	on revolves
around the Earth, we are able to see different, or `	
of the Moon's side. We call these different 'shapes	s' the
The phases depend on the positions of the	
, and in relation to each other.	
Every days the Moon through the Moon Phase	25.
New Moon -	
When the is between the	۲.
() and the	Sun
The side of the moon facing the Earth is	\tilde{I}
illuminated.	Э́
We see the moon during this phase.	
The moon is up throughout the, and down throughout the	·
Waxing Crescent -)
When the moon is moving from	
$\left(\right)$ the Sun. \diamond	
Part of the Moon is beginning to	
This lunar can be seen each	
evening for a few minutes just after	
We say that the Moon is "" because each night a little bit	is
visible for a little bit	
First Quarter -)
When the Moon is the Earth, /	
<pre>/ of its way around its path.</pre>	
During first quarter, of the moon	
is visible.)
The moon is seen for the first half of the, \bigcirc	
and then goes down.	



Eclipses **Blocking out the Sun's Light** Sometimes during their orbits, the _____ and the _____ form a line with the _____. When this happens, an _____ occurs. An eclipse is when our view of one object in the sky is _____ by either another object or the Earth's ______. There are two kinds of eclipse - _____ and _____. Lunar Eclipse -When the _____ moves between the _____ and the _____. The Earth ______ part of the Sun's light from reaching the ______. We will see the Earth's _____ on the moon. Earth Lunar Sun Eclipse Solar Eclipse -When the _____ moves between the _____ and the _____. The Moon _____ part of the Sun's light from reaching the _____. We will see the sky slowly gets _____ as the Moon moves in front of the _____. When the Moon and Sun are in a _____ line, it is called a _____ eclipse. These are very _____. Most people only see _____ in their lifetime. SOLAR ECLIPSE Location where total eclipse can Moon be seen Moon's Orbit Sun

The Stars

What are Stars?

A star is a huge sphere of very and energy		•	
Nuclear fusion happens when ligh	ter elements are	e forced	to become
is created causing the star to	••		
of our solar system there is a sta and cr	ar that we call ou	ır Sun. On earth w	ve receive the
Star Characte	eristics	j	
Stars come in a variety of sized star.	and	Our Sun is an	
This is an example of the Hertzs	prung-Russell dic	igram, or	
first used in 1912. Two astronom	ers, Ejnar Hertz	zsprung from	and
Henry Russell from the	, both discovere	d that the	
of a star depends on the surface		of the star.	

Surface Temperature (Kelvin)

They came up with this diagram that explains the _				,
and of stars.				
\mathbb{Y} – axis The scale on the left shows how		a sta	ar is.	We call
this Star Luminosity or		_•		
X-axis The letters across the bottom repres	sent the		(of stars.
${f O}$ (Blue), ${f B}$ (Blue/White), ${f A}$ (White), ${f F}$ (White/Yellow), ${f Q}$	G (Yellow), 🔣	(Orange)	, M ((Red)
The of the stars measured ad	cross the b	ottom a	of the	e scale
is measured in		Temperature S	cales	
	Fahrenhei	Celsiu	s	Kelvin
Most stars in our universe are in the	Boiling Point of Water 2	12°F	100°C	373.15 К
, including our Notice how the biggest stars are the	Highest Temp 1 ever recorded in US	34°F ————	56.7°C	—— 330 K
, but not the The				
white dwarf stars are near the end of their life	Wator		0°C	273.15 K 255 K
and losing much of their, but				
they are very	Moon, at2	280°F	-173°C	100 K
http://www.kidsastronomy.com/stars.htm	Absolute	160°F	-273°C	

Movement of Stars in the Sky

to

When we look up at th	e night sky we can see the _	The stars seem to
across th	e night sky just like the	moves across the daytime
sky. The stars at nigh	t actually	
moving, but we see the	em this way because of the	Celestial north pole
Earth's	The stars appear to	
	as they cross the night sky,	Celestial equator
because the Earth is _	on its	Ecliptic North
·		1970g
There is one star that	we see move.	- Siguator
This is	, or the north star.	South pole
Polaris is the star at t	he end of the	Y
	The reason we don't	
see Polaris	like all of the other	Celestion
stars is because it is p	perfectly	Celestial south pole
•	th's geographic	
	5 5	

The Galaxies and the Universe

The Earth, the Moon, the Sun and the rest of our Solar System are a	ll part of a
larger system called a A galaxy is a large group of	
dust, and dark matter held together by	
containing to a of stars. They f	orm in
different shapes such as galaxies and	galaxies.
We live in a galaxy called the	Light Years .
We live in a galaxy called the A spiral galaxy is a galaxy in	Galactic Bulge
which the stars and gas clouds are concentrated mainly	
in one or more Every time you	rs
gaze at the night sky, you are looking at the	
in the Milky Way Galaxy. We can't see the	
, because we are one	
of the spiral arms of the galaxy. We do know from	
images that the Milky Way is a system	
of stars, with a central We cannot	
travel our galaxy to see what it	
really looks like because the distance (over 100,000	
light years) is to travel. We use our	of
the shapes of other galaxies, and the Milky Wa	y must be a
version of a spiral-type galaxy.	
The telescope has revealed about 100	galaxies.
All of these galaxies make up an even larger system called the	
The universe, or the, is all of the existing	and
believed to be at least 10 light year	
and about 13 years old.	
Lets start from the beginning	•
The Earth revolves around the	
The Sun in turn revolves or circles the center of the	·
Our galaxy is part of a group of galaxies called the	
The local group of galaxies are all part of a bigger cluster of galaxies ca	lled the
Now here is where it gets fun.	
Millions of galaxy clusters around the are strung togeth	ner like a
If you could look at the entire universe at once it would look like a giant spiderw billions of, and trillions and trillions of	