ASTronomy\#3 - NOTEBOOK The Solar System

LEARNING TARGETS

I can identify the inner and outer planets.
I I can explain the difference between the inner planets and outer planets.
I I can describe the asteroid belt and identify its location.

- I can describe the difference between a planet and an asteroid.

I can explain how a comet is different from an asteroid.
\square I can describe the composition of a comet and its tail.

- I can describe the characteristics of a comet as it moves through its orbit around the Sun.
- I can use AUs to show the distances of the planets from the Sun.
\square I can compare planets using their masses, rotations and revolutions.

scientific Language

1. Solar System - The collection of eight planets and their moons along with other smaller bodies that orbit around the sun.
2. Planet- A celestial body moving in an elliptical orbit around a star.
3. Inner Planets- The four smaller planets made mostly of rocky materials.
4. Outer Planets- The four larger planets having thick atmospheres and no solid surface.
5. Asteroid - Small rocky body orbiting the Sun.
6. Asteroid Belt - A disc of small rocky bodies in the Solar System between the orbits of Mars and Jupiter.
7. Astronomical Unit- The average distance between the center of Earth to the center of the Sun.
8. Comets - A celestial object consisting of a nucleus of ice and dust that forms a "tail" which points away from the Sun when near it.
9. Kepler's 2nd Law of Planetary Motion- The closer an object is in its orbit around the Sun, the faster it moves.
10. Moon - A natural satellite of a planet.

Ourr Solar System

Solar System

Our Solar System is made up of \qquad planets, including Earth, and smaller objects that orbit the \qquad . The Sun contains \qquad \% of the mass of the solar system and is the central object because of its huge \qquad pull.

The Planets

Planets are celestial bodies moving in an elliptical \qquad around a \qquad .
The planets in our Solar System are divided into two smaller categories: the
\qquad planets and the \qquad planets based on \qquad and their general make-up (_).

The Inner Planets

The Inner Planets are called the \qquad planets. These are small, rocky planets with \qquad cores. They are located between the \qquad and the belt. These planets include \qquad , \qquad , and \qquad .
\qquad planet from the Sun

Venus is often called farth's "lister planes" because they ane very similar. Venus is our solar system's brightiest planet.
Venus has thounands of craters and at least 167 lape volcanoes.

Venus-

\qquad planet from the Sun About the \qquad size diameter and mass as Earth Earth's \qquad , except she's hotter
\qquad moons
\qquad atmosphere with sulfuric \qquad rain
Temperatures average about \qquad due to the
huge \qquad effect

Mercury is the closest planet to the Sun.
Mercury's surface is covered with craters. Meccuuse there is no oxygen and too much heat. Because there is no oxygen and to much heat,
scientists believe no life forms exist on Mercury.

Eartlh

\qquad planet from the Sun
\qquad
Atmosphere of nitrogen and \qquad that allows \qquad to exist
Temperatures average about \qquad (

Earth is about 4 s bilion years oid. 11\$ of Earths surface is covered by wate. Unike other planets, farths crust is divided into plates. that move above the mantie below.

 planet from the Sun
\qquad of the size of Earth

Atmosphere is mostly carbon dioxide and is \qquad Temperatures range from \qquad to \qquad

What do these all have in common??
Relatively \qquad , very few to no
\qquad , solid \qquad planets, they are
\qquad to the sun and \qquad together, and they are inside the \qquad belt.

Terrestrial planet interiors to same scale

The Asteroid Belt

Made up of asteroids which are \qquad bodies orbiting the \qquad .
The largest, Ceres, is nearly \qquad across, it is called a dwarf planet. Scientist believe the rocks are left over from a \qquad that never formed.

Asteroids \qquad as the \qquad around the Sun, just like the planets. Some asteroids even have \qquad ! We have even landed a space
\qquad on the asteroid Eros.

Smaller rocks and particles orbiting the sun are called \qquad . If these happen to enter Earth's atmosphere we call them a \qquad or . If there are pieces left over that land on Earth's surface we call these \qquad _.

The Outer Planets

The Outer Planets are called the \qquad . These planets are much
\qquad and are made mostly of lighter substances such as hydrogen, helium, methane and ammonia. They are located \qquad the asteroid belt.
The outer planets include \qquad , \qquad , and \qquad .

Jupiter has at least 64 moons.
Jupiter's atmosphere has many cloud layers and different bands, which cause many storms.
The Great Red Spot on Jupiter is a giant storm.

Junpiterr- \qquad planet from the Sun times the size of Earth moons (and counting)
Atmosphere is hydrogen and helium, and is very
The large \qquad is a huge storm, \qquad to \qquad times larger than Earth Does not have a \qquad surface
Temperatures average \qquad at cloud level

Saturim-

 planet from the Sun\qquad times the size of Earth
\qquad moons (and counting)
Atmosphere is hydrogen and helium
Has a \qquad system surrounding the planet made of water \qquad with some rocky material

Does not have a \qquad surface
Temperatures average \qquad

Uræ@us-

\qquad planet from the Sun

\qquad times the size of Earth moons (and counting)
Atmosphere is hydrogen, helium and methane Uranus rotates on its \qquad
Does not have a \qquad surface
Temperatures average \qquad
\mathbb{N} epturne \qquad planet from the Sun
\qquad times the size of Earth
\qquad moons (and counting)
Atmosphere is methane, this gives it the
\qquad
\qquad color
Revolution path can cross \qquad orbital path
Does not have a \qquad surface
Temperatures average \qquad

Jovian planets interiors to same scale
Plurto - In 2006, Pluto was reclassified as a \qquad planet, because of its
\qquad in space and its \qquad size.

In July 2015, a space probe called \qquad (launched by NASA in January 2006) had its flyby for Pluto. New Horizons collected \qquad and took __ of Pluto. http://pluto.jhuapl.edu/index.php

M

V
E
M
J
S
\mathbf{U}

Planetary Comparisons

DistamCe - To compare distances between between objects in space, we have to use a different unit. The unit we use is called an \qquad (AU) and it represents the average distance between the center of \qquad to the center of the \qquad . One $A U$ is equal to \qquad miles
(149,597,870.691 km). New Horizons is currently about \qquad AUs from Earth.

Use this ruler to show the average

Average Distance of the
 Planets from the Sun

Planet	Average Distance $\mathbf{(k m)}$	Average Distance (AU)
Mercury	$57,910,000$	0.39
Venus	$108,210,000$	0.72
Earth	$149,600,000$	1.00
Mars	$227,920,000$	1.52
Jupiter	$778,570,000$	5.20
Saturn	$1,433,530,000$	9.58
Uranus	$2,872,460,000$	19.20
Neptune	$4,495,060,000$	30.05

M12SS - To compare the mass of planets, we also have to use a different unit. The unit we use is the mass of the \qquad . This means we set the mass of Earth equal to \qquad . Then, we use that amount to express the mass of the planets. For example, the mass of Venus, our twin, is \qquad .
This means it is close to the mass of \qquad , but a little \qquad .

Solar System Data
This chart includes the mass of the other planets compared to Earth.

Celestial Object	Mean Distance from Sun (million km)	$\begin{gathered} \text { Period of } \\ \text { Revolution } \\ \text { (d=days) (} y=\text { years) } \end{gathered}$	Period of Rotation at Equator	Eccentricity of Orbit	Equatorial Diameter (km)	$\begin{gathered} \text { Mass } \\ (\text { Earth }=1) \end{gathered}$	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
SUN	-	-	27 d	-	1,392,000	333,000.00	1.4
MERCURY	57.9	88 d	59 d	0.206	4,879	0.06	5.4
VENUS	108.2	224.7 d	243 d	0.007	12,104	0.82	5.2
EARTH	149.6	365.26 d	23 h 56 min 4 s	0.017	12,756	1.00	5.5
MARS	227.9	687 d	24 h 37 min 23 s	0.093	6,794	0.11	3.9
JUPITER	778.4	11.9 y	9 h 50 min 30 s	0.048	142,984	317.83	1.3
SATURN	1,426.7	29.5 y	10 h 14 min	0.054	120,536	95.16	0.7
URANUS	2,871.0	84.0 y	17 h 14 min	0.047	51,118	14.54	1.3
NEPTUNE	4,498.3	164.8 y	16 h	0.009	49,528	17.15	1.8
EARTH'S MOON	149.6 (0.386 from Earth)	27.3 d	27.3 d	0.055	3,476	0.01	3.3

Comets

Comets are also a part of our solar system. They are often called \qquad
\qquad . Comets are small \qquad bodies containing \qquad , carbon dioxide, ammonia and methane. Like planets, comets also the Sun, but their orbits run \qquad to the planets' orbits.

The extreme \qquad orbit of comets has them \qquad as they approach the \qquad and its gravity and then they can spend hundreds to \qquad of years out in the depths of the solar system.

Like all orbiting bodies, comets follow of Planetary Motion - the \qquad they are to the Sun, the \qquad they move. This happens because as objects get closer to the Sun the
\qquad pull between the
two bodies \qquad .

When comets get close to the Sun they start to \qquad creating a \qquad of dust and gas. The solar winds \qquad the tail from the sun.

\qquad

Some of our famous comets:

Halley's Comet is the most famous of the comets. Halley's Comet takes about \qquad years to travel around the Sun. The last time it passed by Earth was in \qquad and it will be back by in \qquad .

Hyalkurtalke is an icy-blue comet and is the closest comet to come by the Sun in \qquad years. The Ulysses space probe passed through its tail in \qquad , and found the tail was \qquad km (350 million miles) long!!
Halle $\mathbb{B o p p}$ is a large and spectacular comet. It made its closest approach to Earth in \qquad . The last time it flew by was \qquad BC. Hale Bopp is so bright we could see it when it was still outside of the orbit of \qquad !

