Name_____Test Date ____ Hour__ ASTRONOMY#3 - NOTEBOOK The Solar System

LEARNING TARGETS

- □ I can describe the objects that make up our solar system.
- I can identify the inner and outer planets.
- **I** can explain the difference between the inner planets and outer planets.
- □ I can describe the asteroid belt and identify its location.
- **I** can describe the difference between a planet and an asteroid.
- **I** can explain how a comet is different from an asteroid.
- □ I can describe the composition of a comet and its tail.
- □ I can describe the characteristics of a comet as it moves through its orbit around the Sun.
- □ I can use AUs to show the distances of the planets from the Sun.
- □ I can compare planets using their masses, rotations and revolutions.

SCIENTIFIC LANGUAGE

- 1. Solar System The collection of eight planets and their moons along with other smaller bodies that orbit around the sun.
- 2. Planet- A celestial body moving in an elliptical orbit around a star.
- 3. Inner Planets- The four smaller planets made mostly of rocky materials.
- 4. Outer Planets- The four larger planets having thick atmospheres and no solid surface.
- 5. Asteroid Small rocky body orbiting the Sun.
- **6**. **Asteroid Belt** A disc of small rocky bodies in the Solar System between the orbits of Mars and Jupiter.
- 7. Astronomical Unit- The average distance between the center of Earth to the center of the Sun.
- 8. Comets A celestial object consisting of a nucleus of ice and dust that forms a "tail" which points away from the Sun when near it.
- **9. Kepler's 2nd Law of Planetary Motion** The closer an object is in its orbit around the Sun, the faster it moves.
- 10. Moon A natural satellite of a planet.

Our Solar System

Solar System

Our Solar System is made up of _____ planets, including Earth, and smaller objects that orbit the _____. The Sun contains _____% of the mass of the solar system and is the central object because of its huge _____ pull.

The Planets

Planets are celestial bodies moving in an elliptical _____ around a _____. The planets in our Solar System are divided into two smaller categories: the

_____ planets and the _____ planets based on _____ and their general make-up (____ Sun \square 0 A 0 Mercury Venus Mars Saturn 20 \square 0 Jupiter Uranus Neptune Pluto

The Inner Planets

The Inner Planets are called the _____ planets. These are small, rocky planets with _____ cores. They are located between the _____ and the _____ belt. These planets include ______, ____,

____ and _____ .

Mars is known for being red in color, Mars has a large volcano called Olympus Mons. Valles Marineris is the greatest valley caused by erupted volcanoes.

The Asteroid Belt

Made up of asteroids which are ______ bodies orbiting the _____. The largest, Ceres, is nearly ______ across, it is called a dwarf planet. Scientist believe the rocks are left over from a ______ that never formed.

Asteroids ______ as the ______ around the Sun, just like the planets. Some asteroids even have _____! We have even landed a space ______ on the asteroid Eros.

Smaller rocks and particles orbiting the sun are called ______. If these happen to enter Earth's atmosphere we call them a ______ or ______. If there are pieces left over that land on Earth's surface we call these ______.

The Outer Planets

The Outer Planets are called the	These planets are much				
and are made mostly of lighter substan	ces such as hydrogen, helium,				
methane and ammonia. They are located	the asteroid belt.				
The outer planets include,,	//				
and					

Uranus's axis of rotation is tilted on its sides so the north and south poles are located where most planets have their equators. Uranus is the collect planet and is composed of clouds, rock and ice. Uranus has 13 rings but they are very dark. The lightest one is called Epsilon.

Neptune	planet from the S	un	പ്രഭംബം
times the siz			
moons (and c			
Atmosphere is methar			
	•		
Revolution path can cr		oital path	
Does not have a	surface		
Temperatures average	;		
Saturn	Relatively sur	, many _ face planets, tł	ney are
Neptune Uranus			d they are outside
Earth to same scale	the	belt.	
silicate core liquid hydrogen			
liquid metallic hydrogen			
Jovian planets interiors to same scale			
Pluto - In 2006, Pluto was r in space and its _		planet	, because of its
In July 2015, a space probe in January 2006) had its fly of Pluto. ht		Horizons collec	
M	· · · · · · · · · · · · · · · · · · ·		
V			
E			
Μ			
L			
S			
U			

Ν

Planetary Comparisons

 ${f Distance}$ - To compare distances between between objects in space, we have to use a different unit. The unit we use is called an _____

_____ (AU) and it represents the average distance between the center of _____ to the center of the _____. One AU is equal to ____ miles (149,597,870.691 km). New Horizons is currently about _____ AUs from Farth.

Use this ruler to show the average distances of the planets to the Sun. Use the scale 1 AU = 1 cm

Average Distance of the Planets from the Sun					
Planet	Average Distance (km)	Average Distance (AU)			
Mercury	57,910,000	0.39			
Venus	108,210,000	0.72			
Earth	149,600,000	1.00			
Mars	227,920,000	1.52			
Jupiter	778,570,000	5.20			
Saturn	1,433,530,000	9.58			
Uranus	2,872,460,000	19.20			
Neptune	4,495,060,000	30.05			

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 PreciseRuler.com

Mass - To compare the mass of planets, we also have to use a different unit. The unit we use is the mass of the ______. This means we set the mass of Earth equal to . Then, we use that amount to express the mass of the planets. For example, the mass of Venus, our twin, is _____. This means it is close to the mass of _____, but a little _____.

This chart	Celestial Object	Mean Distance from Sun (million km)	Period of Revolution (d=days) (y=years)	Period of Rotation at Equator	Eccentricity of Orbit	Equatorial Diameter (km)	Mass (Earth = 1)	Density (g/cm ³)
includes the mass	SUN			27 d		1,392,000	333,000.00	1.4
of the other	MERCURY	57.9	88 d	59 d	0.206	4,879	0.06	5.4
	VENUS	108.2	224.7 d	243 d	0.007	12,104	0.82	5.2
planets compared	EARTH	149.6	365.26 d	23 h 56 min 4 s	0.017	12,756	1.00	5.5
to Earth.	MARS	227.9	687 d	24 h 37 min 23 s	0.093	6,794	0.11	3.9
	JUPITER	778.4	11.9 y	9 h 50 min 30 s	0.048	142,984	317.83	1.3
	SATURN	1,426.7	29.5 y	10 h 14 min	0.054	120,536	95.16	0.7
	URANUS	2,871.0	84.0 y	17 h 14 min	0.047	51,118	14.54	1.3
	NEPTUNE	4,498.3	164.8 y	16 h	0.009	49,528	17.15	1.8
	EARTH'S MOON	149.6 (0.386 from Earth)	27.3 d	27.3 d	0.055	3,476	0.01	3.3

Solar System Data

Comets

Some of our famous comets:

Halley's Comet is the most famous of the comets. Halley's Comet takes about ____ years to travel around the Sun. The last time it passed by Earth was in _____ and it will be back by in _____.

1910 and 1986 Sun (Not drawn to scale)

Hyakutake is an icy-blue comet and is the

closest comet to come by the Sun in _____ years. The Ulysses space probe passed through its tail in _____, and found the tail was _____ km (350 million miles) long!!

Hale Bopp is a large and spectacular comet. It made its closest approach to Earth in _____. The last time it flew by was _____ BC. Hale Bopp is so bright we could see it when it was still outside of the orbit of _____!