LEARNING TARGETS

- I can describe a sphere and give evidence used to prove Earth is spherical.

I I can explain the difference between rotation and revolution.

- I can identify the time required for Earth's rotation and revolution.

I can identify the tilt of Earth's axis and describe how it affects the planet.
I I can explain the difference between Solstices and Equinoxes.
I can describe Earth's magnetic field and the benefits Earth receives from it.
\square I can describe how the Earth's magnetic field is created.
I can explain the difference between Earth's rotational axis and Earth's magnetic axis.
\square I can describe why a magnetic compass points north.

1. Magnetic Field- An invisible force protecting the Earth from solar radiation.
2. Core- Innermost layer of Earth composed of an outer liquid layer and inner solid layer of iron.
3. Compass - A navigational device consisting of a magnet free to swing horizontally so that it always points north.
4. Rotation - The spinning of Earth on its axis.
5. Revolution - Earth's yearly orbit around the sun.
6. Season - Each of the four divisions of the year (spring, summer, autumn, and winter) marked by particular weather patterns and daylight hours, resulting from the earth's changing position with regard to the sun.
7. Equinox - The two days during the year when the sun's most direct rays shine on the equator, creating an even 12 hours of daylight and 12 hours of night.
8. Solstice - The two days during the year when the sun's direct rays reach their greatest distance north or south of the equator, creating our longest or shortest days of the year.
9. Tilt - Earth's slant at an angle of 23.5°.
10. Axis - The imaginary vertical line around which Earth spins.
11. Sphere - A round three dimensional object having the same distance from its center to the surface at all points.
12. Ellipse - An elongated closed curve, similar to an oval.
13. Hemisphere - The northern and southern halves of the earth, separated by the equator.

Properties of Earth

Spherical Shape

Planet Earth is a round three dimensional object called a \qquad . A sphere is defined as having the same distance from its
\qquad to the \qquad $a t$ all points.

Curvature of the Earth's Shadow on

the Moon

Only a spherical body can cast a circular shadow for all alignments of the Sun, Moon, and Earth.

At first people thought the Earth was
\qquad , a Greek astronomer and philosopher, suspected the Earth was a
\qquad he made during an eclipse. He noticed that the Earth cast a \qquad - \qquad on the moon during the eclipse. based on the belief in a spherical Earth, Observation by sailors also \qquad they observed that ships came into view a \qquad at a time instead of all at \qquad .

SPHERE

In the late 20th century, artificial \qquad and space
\qquad sent back \qquad finally showing a spherical Earth. However, we now know that the Earth actually bulges slightly at the
\qquad and flattens at the \qquad so it is not a sphere.

Rotation

Earth's \qquad is the imaginary vertical line around which Earth \qquad .
The poles are located at the \qquad and
\qquad ends of Earth's axis. The spinning of Earth on its axis is called
\qquad . This rotation causes
\qquad and \qquad to occur. On
Earth, the rotation takes you in and out of the view of the \qquad the sun is
\qquad . One complete rotation, or \qquad takes \qquad hours and
\qquad minutes, or 1 \qquad .

Revolution

Another important motion is \qquad . Our revolution is Earth's yearly
\qquad around the \qquad . Just as the moon is Earth's satellite, Earth is a
\qquad of the \qquad . Earth completes about 365 \qquad during its 1 \qquad revolution around the sun.

If Earth's orbit was a perfect \qquad with the sun at the center, Earth would maintain a constant \qquad from the sun. However, this is
\qquad the case. Earth's orbit is an \qquad , an elongated closed curve, similar to an \qquad . Because of this the \qquad between the sun and Earth \qquad during its year long orbit. Earth is actually closest to the sun around \qquad and farthest from the sun around \qquad .
hmmmm Why is it cold when we are closest and warm when we are farthest?

148 million
kilometers
(January)

152 million
kilometers (July)

The Tilt and the Seasons

Earth's axis is tilted \qquad , meaning the Earth is not
\qquad up and down.

When a hemisphere is tilted towards the sun, they experience
\qquad _.

When a hemisphere is tilted away from the sun, they experience
\qquad .

The hemisphere tilted towards the sun receives \qquad hours of sunlight
 each day compared to the hemisphere tilted away from the sun. The \qquad period of sunlight is one reason summer is \qquad than winter.

The hemisphere tilted towards the sun also receives more \qquad rays, equalling more solar \qquad
and \qquad temperatures.

In the hemisphere tilted away from the sun, the sun appears \qquad in the sky, daylight hours are \qquad and solar radiation is \qquad .

The Equinoxes and the Solstices

Due to the Earth's tilt the sun isn't directly in line with the \qquad except for \qquad days out of the year, once in \qquad and once in
\qquad . We call these days the \qquad .
On the equinoxes, the sun's most

March 20 and September 22

Side View
\qquad rays shine on the equator.
The \qquad equinox is on March \qquad or \qquad . The autumn equinox is on \qquad 22nd or 23rd.
On the equinoxes we have an \qquad 12 hours of \qquad and 12
hours of \qquad . because neither the \qquad hemisphere nor the \qquad hemisphere is tilted towards the sun.

During the rest of the days of the year, the sun's direct rays are shining either
\qquad
\qquad of the equator. When sun's direct rays reach their \qquad distance from equator once in \qquad and once in \qquad . We call these days the
\qquad . The June Solstice (our
\qquad solstice) is when the sun's direct rays have reached the farthest \qquad of the equator. This happens on June \qquad or \qquad .

The December Solstice (our \qquad solstice) is when the sun's direct rays have reached the farthest \qquad of the equator.
This happens on Dec \qquad or \qquad . On the Solstice day we have either our \qquad or \qquad day of the year, depending on which \qquad you are in.

Physical Properties of Earth	
Diameter (pole to pole)	
Diameter (equator)	
Circumference (poles)	
Circumference (equator)	
Mass	
Average Distance to the Sun	
Period of Rotation (1 day)	
Period of Revolution (1 year)	

Earth's Magnetic Field

You can't see it, but there's an invisible \qquad field around the Earth the planet - and all the life - from space \qquad .

The Earth is like a great big magnet. The magnetic field is like a bar \qquad . Earth has a \qquad and a
\qquad magnetic pole, just as a bar magnet has
\qquad

Imagine a giant bar magnet running along the \qquad of Earth. Magnetic field lines extend from these poles out \qquad - \qquad of kilometers into space and wrapping around to the \qquad pole. This is the Earth's
\qquad .

Scientists hypothesize that the movement of \qquad inside Earth's core, along with Earth's \qquad , generates a \qquad field. The flow of liquid iron generates \qquad currents, which in turn produce
\qquad fields.
\qquad the planet from space radiation. The biggest culprit is the Sun's \qquad
\qquad . These are highly \qquad particles blasted out from the Sun like a steady wind.
The Earth's magnetosphere channels the solar wind \qquad the planet, so that it doesn't \qquad us.

Without the

 magnetic field, the solar wind would strip away our- this is what
probably happened to \qquad .

When you observe a compass needle pointing \qquad , you are seeing of Earth's magnetic field. In order for the north end of the
compass to \qquad toward the North Pole, you have to assume that the 'buried bar magnet' has its \qquad end at the \qquad Pole. If you think of the world this way, then you can see the normal " \qquad __ " rule of magnets is working.

Earth's \qquad axis does not align with its \qquad axis.
The magnetic axis is tilted at an angle of ___ to the rotational axis. If you followed a compass needle, you would end up at the \qquad north pole rather than the \qquad north pole. The magnetic poles have
\qquad throughout the
Earth's history wandering as much as
\qquad km every year.

The Earth's annual orbit around the Sun. (Not to Scale)

