Name_____ Test Date ____ Hour__ ASTRONOMY#2 - NOTEBOOK Planet Earth

LEARNING TARGETS

- □ I can describe a sphere and give evidence used to prove Earth is spherical.
- □ I can explain the difference between rotation and revolution.
- I can identify the time required for Earth's rotation and revolution.
- I can identify the tilt of Earth's axis and describe how it affects the planet.
- I can explain the difference between Solstices and Equinoxes.
- I can describe Earth's magnetic field and the benefits Earth receives from it.
- □ I can describe how the Earth's magnetic field is created.
- □ I can explain the difference between Earth's rotational axis and Earth's magnetic axis.
- I can describe why a magnetic compass points north.

SCIENTIFIC LANGUAGE

- 1. Magnetic Field- An invisible force protecting the Earth from solar radiation.
- 2. Core- Innermost layer of Earth composed of an outer liquid layer and inner solid layer of iron.
- **3. Compass** A navigational device consisting of a magnet free to swing horizontally so that it always points north.
- 4. Rotation The spinning of Earth on its axis.
- 5. Revolution Earth's yearly orbit around the sun.
- 6. Season Each of the four divisions of the year (spring, summer, autumn, and winter) marked by particular weather patterns and daylight hours, resulting from the earth's changing position with regard to the sun.
- 7. Equinox The two days during the year when the sun's most direct rays shine on the equator, creating an even 12 hours of daylight and 12 hours of night.
- 8. Solstice The two days during the year when the sun's direct rays reach their greatest distance north or south of the equator, creating our longest or shortest days of the year.
- 9. Tilt Earth's slant at an angle of 23.5°.
- 10. Axis The imaginary vertical line around which Earth spins.
- **11. Sphere** A round three dimensional object having the same distance from its center to the surface at all points.
- 12. Ellipse An elongated closed curve, similar to an oval.
- 13. Hemisphere The northern and southern halves of the earth, separated by the equator.

Properties of Earth

Spherical Shape

Planet Earth is a round three dimensional object called a ______. A sphere is defined as having the same distance from its _______ to the ______ at all points.

At first people thought the Earth was
In 350 BC,,
a Greek astronomer and philosopher,
suspected the Earth was a
based on
he made during an
eclipse. He noticed that the Earth cast
a on the
moon during the eclipse.

Observation by sailors also ______ the belief in a spherical Earth, they observed that ships came into view a ______ at a time instead of all at _____.

In the late 20th century, artificial ______ and space ______ sent back ______ finally showing a spherical Earth. However, we now know that the Earth actually bulges slightly at the ______ and flattens at the ______, so it is not a ______ sphere.

Rotation

Earth's ______ is the imaginary vertical line around which Earth ______. The poles are located at the ______ and ______ ends of Earth's axis. The spinning of Earth on its axis is called _______. This rotation causes _______ and ______ to occur. On Earth, the rotation takes you in and out of the view of the ______. The sun is _______. One complete rotation, or ______, takes _____ hours and ______ minutes, or 1 ______.

Revolution

Another important motion is ______. Our revolution is Earth's yearly _____ around the _____. Just as the moon is Earth's satellite, Earth is a _____ of the _____. Earth completes about 365 _____ during its 1 _____ revolution around the sun.

If Earth's orbit was a perfect ______ with the sun at the center, Earth would maintain a constant _____ from the sun. However, this is _____ the case. Earth's orbit is an _____, an elongated closed curve, similar to an _____. Because of 148 million this the _____ between the sun kilometers and Earth _____ during its year long (January) orbit. Earth is actually closest to the sun around _____ and farthest from the sun around ______.

hmmmm Why is it cold when we are closest and warm when we are farthest?

The Tilt and the Seasons

Earth's axis is tilted ______, meaning the Earth is not up and down.

Daylight hours are _____ for the _____, or half of the earth, tilted ______ the sun.

When a hemisphere is tilted towards the sun, they experience

When a hemisphere is tilted away from the sun, they experience

The hemisphere tilted towards the sun receives _____ hours of sunlight each day compared to the hemisphere tilted away from the sun. The _____ period of sunlight is one reason summer is _____ than winter.

temperatures.

In the hemisphere tilted away from the sun, the sun appears _____ in the sky, daylight hours are and solar radiation is _____.

The Equinoxes and the Solstices

Due to t for	he Earth's tilt t days out of t	he sun isn't dired the year, once in	ctly in line wit	h the and once ii	except 1
	We	e call these days	the		
_			On the equin	noxes, the	sun's most
March 20 and				_ rays shii	ne on the equator.
2	September 22	North Pole	The		_equinox is on
Č.		Arctic Circle	March	or	The autumn
Sun			equinox is or	۱	22nd or
	Vertical ray	Tropic of Cancer	23rd.		
		Equator	On the equir	ioxes we h	ave an
2		Tropic of Capricorn	12 hours of		and 12
K		Antarctic Circle	hours of		because
C.		 South Pole	neither the		
2			hemisphere	nor the	
	Side View		, hemisphere	is tilted to	owards the sun.

During the rest of the days of the year, the sun's direct rays are shining either

or	of the	equator. When
sun's direct rays rea	ich their	
distance from equat	or once in	and once
in	We call these	e days the
·	The June Solst	ice (our
5	solstice) is when	the sun's direct
rays have reached t	the farthest	of the
equator. This happe	ns on June	or
The December Solst	tice (our	
solstice) is when the	e sun's direct ray	s have reached
the farthest	of [·]	the equator.
This happens on Dec	: or	On the
Solstice day we have	e either our	
or	_ day of the yea	ar, depending on
which	you are in.	

Physical Properties of Earth			
Diameter (pole to pole)			
Diameter (equator)			
Circumference (poles)			
Circumference (equator)			
Mass			
Average Distance to the Sun			
Period of Rotation (1 day)			
Period of Revolution (1 year)			

Earth's Magnetic Field

You can't see it, but there's an invisible	field around the Earth
the planet - and all the life	- from space
Spin axis Magnetic field lines	The Earth is like a great big magnet. The magnetic field is like a bar Earth has a and a magnetic pole, just as a bar magnet has magnetic poles at each of its ends.
Imagine a giant bar magnet running along the _	of Earth. Magnetic field
lines extend from these poles out	of kilometers
into space and wrapping around to the	pole. This is the Earth's
Scientists hypothesize that the movement of _ along with Earth's, generat flow of liquid iron generates fields.	inside Earth's core, tes a field. The _ currents, which in turn produce

The magnetic field of the Earth ________ the planet from space radiation. The biggest culprit is the Sun's _______. These are highly _______ particles blasted out from the Sun like a steady wind. The Earth's magnetosphere channels the solar wind _______ the planet, so that it doesn't ______ us.

this is what
probably happened
to _____.

When you observe a compass needle pointing ______, you are seeing ______ of Earth's magnetic field. In order for the north end of the compass to ______ toward the North Pole, you have to assume that the 'buried bar magnet' has its ______ end at the _____ Pole. If you think of the world this way, then you can see the normal "______" rule of magnets is working.

Earth's	_axis does not
align with its	axis.
The magnetic axis is tilte	ed at an angle of
to the rotation	al axis. If you
followed a compass need	le, you would
end up at the	north
pole rather than the	
north pole. The magnetic	c poles have
throu	ighout the
Earth's history wandering	g as much as
km every year.	

The Earth's annual orbit around the Sun. (Not to Scale)

